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The acoustic "eld of rotating sources such as aeroplane propellers and helicopter rotors is
known to develop a marked asymmetry when the incoming #ow is not parallel to the axis of
rotation. This e!ect has been modelled using a "eld composed of &&wobbling modes'',
azimuthal modes whose amplitude is a function of azimuth. A computationally e$cient
method is developed for the calculation of these wobbling modes and of the acoustic "eld at
incidence. Results are presented for operating conditions representative of a range of aircraft
from a high-speed propeller at low incidence to a helicopter rotor. Detailed contour plots of
the acoustic pressure are presented and discussed in the context of the geometry of the
acoustic "eld. The "eld structure is interpreted in terms of the tunnelling of acoustic
radiation across a transition region around the sonic radius (where the source has a Mach
number of unity) and the asymmetry of the "eld is shown to arise from variations in the
thickness of this transition region as the sonic radius varies during a revolution of the rotor.
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1. INTRODUCTION

The calculation of the acoustic "eld radiated by aeroplane propellers and helicopter rotors
is a problem which is of interest for both technological and scienti"c reasons. As the
environmental requirement for reduced exterior noise and the commercial demand for
lower interior noise drive propulsion development, the need to be able to predict noise levels
accurately at the design stage becomes more important. At present, the main trend in
propeller design is the development of high-speed systems which operate in the transonic or
supersonic regime. The prediction of noise from such designs is di$cult both because of the
complex aerodynamics involved and because of the di$culty of calculating the noise
radiated by a source which may be moving supersonically. Similarly, helicopter rotors have
very complex aerodynamics and, furthermore, demonstrate an extreme form of the problem
studied in this paper, that of incidence. Assuming, however, that the aerodynamics of the
rotor can be calculated, exact theories of aerodynamic noise generation exist [1}3] which
can be used to calculate the radiated noise. The theories of noise generation by moving solid
bodies have existed for about 30 years and have been recast into forms suitable for e$cient
numerical evaluation [4}6]. The accurate computation of propeller noise is thus
commonplace in industry. With increased computing power and the development of
methods suitable for implementation on parallel computers [7], the time required for
calculation of noise directivities has been reduced. On the other hand, the understanding of
the physics of the noise generation process has not advanced as quickly and, for this reason,
a number of approximate methods have been developed.

Approximate methods of propeller noise prediction have existed in various forms,
beginning with point source approaches [8}10], but they were typically developed because
of the relative lack of available computing power and usually began from some ad hoc
22-460X/01/260001#19 $35.00/0 ( 2001 Academic Press



2 M. CARLEY
approximation. More recently, methods have been developed which begin from an exact
theory. These approaches, often based on asymptotic methods [11}13], give simple,
accurate, closed-form equations for the radiated noise which can be used in design
calculations and which also indicate explicitly the dependence of the noise on the propeller
operating parameters. While these studies have usually aimed to provide methods suitable
for industrial noise predictions, they have also been used to study the structure of the
acoustic "eld of rotating sources in some detail, often making explicit connections with the
theory of electromagnetic radiation [14].

A new development was the introduction of a method for the exact evaluation of the
acoustic integrals in a model problem. This approach due to Chapman [15], reduced the
two-dimensional integrals for the acoustic "eld of a stationary rotating source to
one-dimensional integrals in a new co-ordinate system, allowing the acoustic "eld to be
calculated quickly enough, and in enough detail, to allow its structure to be studied. This
method has been extended to the case of a translating rotating source [16, 17] and this
paper contains an extension to the problem of a source at incidence. It should be noted that
throughout this paper, incidence is measured relative to the axial in#ow condition so that
a helicopter rotor is considered to be at approximately 903 incidence.

2. WOBBLING MODES

The problem of noise generated by propellers and rotors at incidence has been studied for
about 30 years. It has long been known that a propeller at "nite angle of attack has an
acoustic "eld which is not symmetric about the axis of rotation, as in the axial in#ow or
non-translating case. This asymmetry is due to two e!ects, the "rst aerodynamic and the
second acoustic. The aerodynamic e!ect, which was the "rst to be modelled [18], is due to
the variation of blade incidence during a revolution. This causes the force on the blade to
#uctuate as it rotates, and also alters the rate of momentum injection at the blade surface.
This e!ect is quite well understood and its contribution to the acoustic "eld has been
calculated for some 30 years.

The second e!ect, which is of interest in this paper, has been studied more recently. As
a blade rotates, its radiation e$ciency varies with azimuth so that the steady-source
radiation is also a!ected by the angle of attack. This purely acoustic e!ect was initially
studied by Stu! [19] and later by Mani [20], Hanson and Parzych [21], Envia [22] and
Hanson [23]. With the exception of reference [21], these studies were analytical and aimed
at understanding the physics of the acoustic process as well as providing prediction
methods.

The work of Stu! [19] used near"eld and far"eld point-force approximations to estimate
the e!ect of cross#ow on the acoustic "eld of a rotating source. It can thus be considered an
extension of the earlier work of Gutin [9] or of Lowson [24]. The next advance in the area
was that of Mani [20], who calculated, to "rst order in cross#ow Mach number, the e!ect of
incidence on the steady loading "eld and demonstrated good agreement with the
experimental data. He concluded that the e!ect of asymmetric convection on the steady
loading noise of high tip-speed, highly loaded propellers (i.e. most modern designs) may be
much greater than the e!ect of unsteady loading*the e!ect of incidence may be unrelated
to loading #uctuations. Hanson [23] developed this idea further and calculated the far"eld
steady loading noise without limit on the angle of attack. This work introduced the concept
of the &&wobbling mode''. The acoustic "eld radiated by an azimuthal mode of the source is
made up of azimuthal modes whose amplitude varies with angle. Since they can no longer
be considered &&spinning modes'' as in the axial in#ow case, they are said to wobble during
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a revolution. The acoustic e!ect of incidence was explained by the variation of the Mach
number of the source towards a "eld point, causing the Doppler factor in the acoustic
integrals to vary. In related work [22], Envia concentrated on the problem of noise from
a large-blade number propeller in high-speed #ight. Under these conditions, the angle of
attack is small (less than 53) and using this approximation, acoustic expressions were
derived which are valid in both the near and far "eld.

For the industrial prediction of noise from propellers at incidence, a number of methods
exist. These can either incorporate explicitly the e!ect of a mean #ow in the time [25] or
frequency domain [21] or can account for it implicitly via the observer motion, as in many
time domain formulations [4, 5]. A series of tests comparing predictions with data from
NASA's Propeller Test Assessment aircraft have been conducted [26, 27] using time and
frequency domain techniques respectively. The agreement in both cases was good,
demonstrating the power of the prediction methods.

The status quo in studying noise from propellers at incidence is that there are methods
which are exact but computationally intensive [21, 25] and methods which are quicker but
limited to the far "eld [23] or to small angles of attack [20, 22]. It seems worthwhile then to
develop an analysis which will allow the acoustic "eld to be calculated exactly, without
restriction on incidence or observer position, to allow the physics of the radiation process to
be studied. Such a method exists for propellers in forward #ight [15}17] and in this paper it
will be extended to propellers at incidence.

2.1 THE STRUCTURE OF ROTATING SOUND FIELDS

The framework for the analysis which follows is the method originally introduced by
Chapman [15] as a model problem for rotor acoustics and later extended by Carley [16, 17]
to cover propellers in forward #ight and more general source distributions. Using these
methods, it is possible to calculate the acoustic "eld of a rotor at a resolution of less than
one wavelength, in a reasonable time. This allows the structure of the "eld to be studied. In
particular, the far "eld, near "eld and the transition between them can be examined.
Summarizing brie#y, the main conclusion of these studies is that the "eld is divided by the
sonic radius, the radius at which the rotating source has, or would have, a Mach number of
unity. Around this radius, over a distance of about half an acoustic wavelength, the
transition from the near to the far "eld occurs. When the rotor is subsonic, it lies completely
within this region and the acoustic radiation must &&tunnel'' into the far "eld, emerging as
quite weak sound. When the rotor lies partly outside this radius, it can radiate directly into
the far "eld and the strong beaming pattern characteristic of supersonic rotors is observed.
When the rotor is supersonic but does not extend beyond the transition region, the acoustic
"eld is closer to that of a subsonic rotor, some energy still being lost in tunnelling.

With this in mind, there is another way of thinking about the e!ect of incidence on
a rotor. At incidence, the sonic radius becomes a function of azimuth in the rotor plane
(equation (23)). One can then think, for example, of a rotor which passes in and out of the far
"eld as it rotates, causing asymmetry in the acoustic "eld. Such an e!ect will indeed be
obvious in the results of section 4.

3. ACOUSTIC CALCULATIONS

The basic problem is illustrated in Figure 1. A propeller operates in a #ow of vector Mach
number M

=
. Co-ordinates are chosen so that the propeller axis lies along the z-axis of the



Figure 1. Co-ordinates for propeller and observer.
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reference frame. Cylindrical co-ordinates (r, h, z) are de"ned, with points on the propeller
disc given by (r

1
, h

1
, 0). The acoustic integrals are those of Goldstein [3] which, neglecting

non-linear terms, are
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where A is the surface of the source, o
0

is the unperturbed #uid density, v
n
the #uid normal

velocity at the source surface, f the force exerted on the #uid by the surface and the
convective derivative D/Dt is de"ned as

D

Dt
"

L
Lt
#cM

=
)+,
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Figure 2. Co-ordinate system for in#ow.
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The Green's function G to be inserted into the acoustic integrals is that given by Garrick
and Watkins [10],

G (x, t; y, q)"
d(t!q!p/c)

4nS
,

which in the frequency domain, for a source with time dependence exp !jut, is

G(x, y, u)"
e+kp
4nS

, (2)

where k"u/b2c (i.e. the acoustic wavenumber has been scaled on b2 for convenience in
later calculations) and the phase and amplitude radii p and S, respectively, are given by

S"(b2 Dx!y D2#[M
=
) (x!y)]2)1@2, (3a)

p"S!M
=
) (x!y), (3b)

b"(1!DM
=

D2)1@2.

Co-ordinates are chosen so that M
=
"M

=
(sin a, 0,!cos a)"(M

x
, 0,!M

z
) where a is

the angle of incidence, i.e. the in#ow is de"ned such that it corresponds to forward #ight in
the z direction, (Figure 2). Converting to cylindrical co-ordinates:

M
=
) (x!y)"M

x
(r cos h!r

1
cos h

1
)!M

z
z. (4)

At this point, the problem is simpli"ed by assuming that source terms are independent of
source radius r

1
. It has been shown in a previous paper [17] how the results of the type of

analysis which follows can be used to calculate the "eld from a source of arbitrary radial
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dependence so this does not imply any loss of generality. The reason for the simpli"cation is
that it makes possible the evaluation of the acoustic integrals by an e$cient numerical
method. With this assumption, inserting the Green function into equation (1) and
transforming h

1
to h

1
#h, the acoustic integrals become

p
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"!jnM

t
(!jnM

t
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=
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where lengths have been non-dimensionalized on rotor radius a, velocities on the speed of
sound c and pressures on o

0
c2. The tip Mach number M

t
")a/c and the wavenumber

k"nM
t
/b2. With the transformation of h

1
,
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When the in#ow is purely axial, I depends sinusoidally on h and need only be calculated at
each value of r and z. With the introduction of a cross#ow M

x
, if I is to be known exactly

over the acoustic "eld, it must be calculated at every value of r, z and h which may be of
interest. The approximate methods described in section 2 can be used to reduce the e!ort
involved but since an exact solution is required, a di!erent approach will be used.

3.1 CALCULATION METHOD

The "rst step in the evaluation of I is the introduction of a co-ordinate transformation as
in Chapman [15] (also reference [28], p. 227). The co-ordinate transformation is shown in
Figure 3. The new co-ordinates (r

2
, h

2
) are centred on the intersection of the observer

sideline with the source plane, z remaining unchanged. With this transformation,
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and I is transformed to
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Figure 3. New co-ordinate system for acoustic integrals.
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The limits on h
2

are found from the intersection of a circle of radius r
2

centred on the
observer sideline with the edge of the source disc r

1
"1:

h(0)
2
"cos~1

1!r2!r2
2

2rr
2

.

This transformation has been used previously [15}17] in the calculation of the acoustic
"eld of a rotor at zero incidence but to apply it to the incidence problem requires that the
Green's function be expanded into a Fourier series in h

2
.

3.2. GREEN'S FUNCTION MODAL EXPANSION

The "rst stage in expanding the Green function is to apply the Bessel function addition
theorem [29, 30]:
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Then, assuming that exp[ jk(S!S
0
)]S

0
/S can be expanded in a Fourier series in h

2
,
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where g
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is the coe$cient of exp jph
2

in the Fourier series of exp jk (S!S
0
)S

0
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0
is

S evaluated at cos (h#h
2
)"0. For computational purposes, the Fourier expansion is

restricted to (2P#1)](2M#1) terms.
The calculation of the coe$cients of the Fourier modes, g

p
, starts from an expansion of

G in powers of cos (h#h
2
). The method adopted appears to be new although it has an

obvious a$nity with the techniques described by Van Dyke [31]. Beginning with Leibniz'
rule for di!erentiation of a product [30], the uth derivative of exp [jk (S!S
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The derivatives of S
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/S can be written directly from the power-series expansion of S~1:
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Rearranging the second summation to eliminate the complex terms, the summation reduces
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and the uth derivative of S
0
/S with respect to cos(h#h

2
), evaluated at cos(h#h

2
)"0, is

then
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The derivatives of exp jk(S!S
0
) are also needed and can be evaluated using a recursion

relation. Starting with
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the uth derivative of exp jk(S!S
0
) can be evaluated using the derivatives of S and the lower

order derivatives of exp jk(S!S
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). The derivatives of S, in turn, can be calculated by the
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The derivatives of exp jk (S!S
0
) at C"0 can then be evaluated using a recursion seeded
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combined with equation (9) for the higher derivatives and equation (10) for the derivatives
of 1/S.
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3.2.1. Evaluation of modal coe.cients

Given the power-series expansion of the Green function, whose coe$cients can be
calculated exactly to arbitrary order, the evaluation of the modal coe$cients is quite simple.
The Green's function is represented by a Fourier series in h

2
:

e+kS

4nS
"
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4nS
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=
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p
e +ph2.

The coe$cients g
p

can be evaluated by direct integration of the power series,
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calculated numerically using the method described above. The integral in h
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Evaluating the integrals in terms of their residues at the poles, only terms with
2q!m!p"0 contribute and the resulting modal coe$cient is

g
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3.3. EVALUATION OF I

Given the coe$cients g
p
, the acoustic integral I can be written
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2
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The function K can be evaluated analytically in closed form and this allows the e$cient,
exact, evaluation of I. From this point on, it will be assumed that n is even, n"2u. The odd
mode case can, however, be handled by similar methods to those used here [16]. It is worth
noting at this point that the integrals of equation (15) are integrals over the source disc
where the integrand has angular variation exp j[(p#m)!n]h

1
. This is equivalent to

calculating the "eld due to a #uctuating rotating source [18], but where the unsteadiness is
due purely to asymmetric propagation. It should also be noted that the &&equivalent
unsteady source'' depends on the observer position, the coe$cients g

p
being functions of the

observer co-ordinates.
The integral de"nition of K, equation (16), is "rst rewritten as a complex integral using

the relations (Figure 3),

r
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r
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1
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2
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2
and the contour of integration is part of the unit circle. The
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which can be expanded to
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2
),
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The function t
u,s

is calculated in closed form using di!erent methods depending on the
values of u and s. When s(0, the integrand is expanded into partial fractions [32]:
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i/1

A
i

ki
#

u
+
i/1

B
i

(k#g)i
,

A
i
"

1

(!s!i)!

d~s~i

dk~s~i

1

(k#g)u Kk/0

,

"(!)~s~itu`s~i A
u!s!i!1

s!i B,

B
i
"

1

(u!i)!

du~i

dk~s~i

1

k~s Kk/~g
,

"(!)~stu~s~iA
u!s!i!1

!s!1 B,
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so that

t
u, s

"!

(!)s

n
u
+
i/1
A
u!s!i!1

u!1 B tu~s~i
ri~1
2

sin(i!1)a
i!1

!

(!)s

n
~s
+
i/1

(!)i A
u!s!i!1

!s!1 B tu~s~i
sin (i!1)h(0)

2
i!1

, s(0. (19)

where

a"tan~1
sin h(0)

2
g#cos h(0)

2

,

and for i"1 in the summations

sin (1!i)h(0)
2

1!i
is replaced by h(0)

2
!n

and

sin (1!i)a
1!i

is replaced by

a, t)1,

a!n, t'1.

When 0)s(u!1, successive application of the identity [30, 2.111.2]

P
xn

(a#bx)m
dx"

xn

(a#bx)m~1 (n#1!m)b
!

na

(n#1!m)b P
xn~1

(a#bx)m
dx,

or integration by parts, yields

t
u,s
"

ru~1
2
n

s
+
i/0

(!g)i
s!

(s!i)!

sin[(u!1)a!(s!i)h(0)
2

]

(s#1!u!i)2(s#1!u)
. (20)

When s*u!1, this identity can only be applied s!u times and the formula [30,
2.111.3]

P
xm~1

(a#bx)m
dx"!

xm~1

(a#bx)m~1(m!1)b
#

1

(m!1)b P
xm~2

(a#bx)m~1
dx,

must be used to give

t
u,s
"

ru~1
2
n

s~u
+
i/0

(!g)i
s!

(s!i)!

sin[(u!1)a!(s!i)h(0)
2

]

(s#1!u!i)2(s#1!u)

!

1

n
s!

u!

(!g)s~u`1

(s#1!u)!

u
+
i/1

ru~i
2

sin[(u!i) (a!h(0)
2

)]

u!i
. (21)

The contour of integration of equation (18) depends on the relative values of r and r
2
, as

shown in Figure 4. As r
2

varies, the limits on h
2

also change, thus altering the contour of



Figure 4. Di!erent cases for determination of limits in integral representation of t
u,s

in equation (18). The limits
are determined by the intersection of a circle of radius r

2
(shown dashed) with a circle of radius r

1
"1. (1) r'1/2,

r
2
(1!r; (2) r(1/2, r(r

2
(1!r; (3) r'1/2, 1!r(r

2
(r; (4) r

2
'r.
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integration. In cases 1 and 2 of Figure 4, where r(1 and r
2
(1!r, the contour of

integration in equation (18) is closed and the integral can be evaluated using Cauchy's
residue theorem. For s(0, t

u,s
depends only on the residues at the singularities enclosed by

the contour, these singularities being at 0 and !g. In case 1, r(1/2 and r(r
2
(1!r, both

singularities are enclosed and, since A
1
,!B

1
, t

u,s
,0. In case 2, 1/2(r(1, r

2
(1!r,

t
u,s
"!(!)s tu~s~1 A

u!s!2

!s!1 B.
When s'0, there is only one singularity, that at !g. When this singularity is enclosed,
t
u,s
"(!g)s and t

u,s
,0 otherwise, for u'1.

3.3.1. In,nite series expansions

Finally, in"nite series expansions are also needed for the calculation of K. When r is small
(i.e., for observer positions near the propeller axis), t"r

2
/r can be very large, leading to

numerical errors in the evaluation of K, due to incorrect cancellation between large powers
of t. This can be avoided by expanding in powers of g"1/t. Writing

K
2u,m`p

"

1

j2n P
k*
0

k0

(1/k#g)u

(k#g)u

km`p

k
dk,

"

=
+
q/0

gq
q!

dqK
2u,m`p
dgq Kg/0

.

The derivatives of K
2u,m`p

can be calculated using Leibniz' rule for di!erentiation of
a product [30] and evaluated at g"0, as in [16]

K
2u,m`p

"!

1

n
=
+
i/0
A
u#i!1

u!1 B (!g)i
u
+
q/0
A
u

qB
sin (2u#i!q!m!p)h(0)

2
2u#i!q!m!p

gq. (22)

This provides the formula necessary for the calculation of the acoustic "eld near the
propeller axis.
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4. FIELD CALCULATIONS

The acoustic "eld has been calculated for four sets of operating parameters. Three of these
were chosen as roughly representative of real systems and the fourth was chosen to illustrate
in exaggerated form some of the features of the acoustics of rotors at incidence. To allow the
"elds to be studied in detail, only the thickness noise term (!jnM

t
#M

=
)+)I is illustrated

here. This is because its calculation requires the evaluation of all three spatial derivatives,
making it a useful test of the numerical procedures, and because thickness noise is dominant
in high-speed rotor acoustics, which account for three of the four cases considered. The
&&realistic'' operating conditions chosen are a high-speed propeller in cruise (M

t
"1)05,

M
=
"0)8, a"33), a conventional propeller at takeo! (M

t
"0)8, M

=
"0)2, a"203) and

a helicopter rotor in forward #ight (M
t
"0)8, M

=
"0)2, a"853). The fourth operating

condition is a high-speed rotor in a low-speed mean #ow (M
t
"1, M

=
"0)2, a"903). In

each case, the harmonic number n"16. The operating conditions of the conventional
propeller and the helicopter rotor have deliberately been made identical except for the angle
of attack. This allows an assessment to be made of the acoustic e!ect of incidence. The last
set of operating conditions was chosen to force the blade tip to oscillate about the sonic
radius to examine the e!ect this has on the "eld.

The integral I was calculated over the region !3)z)3, 0)r)3, with some extra
points added outside this range to allow for the calculation of derivatives. The integral
was evaluated at grid points spaced one-tenth of the minimum Doppler shifted wavelength
apart and interpolated on to a "ner mesh using cubic spline interpolation. The
derivatives required for the evaluation of the acoustic "eld were calculated using the spline
coe$cients.

The acoustic "eld, the real part of (!jnM
t
#M

=
)+)I, is shown in Figures 5}8. These

"gures each contain two sets of data, the "rst a slice through the "eld at y"0, the second
a slice at z"0, across the source plane. In the "rst case, #ow is from right to left (M

z
) and

bottom to top (M
x
) and positive pressures are shown as solid lines, negative pressures as

dashed. In the second plot of each "gure, only positive pressures are shown and these are
Figure 5. High-speed propeller in cruise: M
t
"1)05, M

=
"0)8, a"33; (a) y"0, contour levels $1, $0)25,

$0)0625; (b) z"0, contour levels 2, 1, 0)5.



Figure 6. Conventional propeller at takeo!: M
t
"0)8, M

=
"0)2, a"203; (a) y"0, contour levels $0)05,

$0)01, $0)001; (b) z"0, contour levels 0)1, 0)02, 0)01.

Figure 7. Helicopter rotor: M
t
"0)8, M

=
"0)2, a"853; (a) y"0, contour levels $0)1, $0)05, "0)001;

(b) z"0, contour levels 0)25, 0)05, 0)025.
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plotted as solid lines with the disc radius r"1 and the sonic radius,

r*"!

M
x

M
t

sin h#
(M2

x
sin2 h#b2)1@2

M
t

, (23)

shown dashed.
The results shown here were spot-checked against evaluation of the two-dimensional

integral of equation (5a), with the derivatives performed analytically as a check on the
numerical procedures. In performing these checks, it was found that the computational
e!ort required to evaluate the acoustic integrals using the methods of this paper was of the
order of 20% of that needed for full two-dimensional integration.



Figure 8. High-speed rotor: M
t
"1, M

=
"0)2, a"903; (a) h"0, contour levels $0)1, $0)01, $0)001;

(b) z"0, contour levels 1, 0)5, 0)125. The sonic radius is the lower of the two dashed curves.
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4.1. HIGH SPEED PROPELLER IN CRUISE

The "rst set of operating conditions, Figure 5, represent a high-speed propeller
(M

t
"1)05) in forward #ight (M

=
"0)8) at a small angle of attack (a"33). While the

angle of incidence is small, it gives rise to quite large e!ects because of the high #ight speed.
Figure 5(a) shows the "eld in the plane y"0. The "rst point to note is the strong beaming
pattern characteristic of supersonic rotors [15, 16], with sound radiated preferentially
ahead of the rotor disc. There is also a strong variation in the wavelength in the far "eld, due
to the large changes in the Doppler factor. The most obvious feature of the "eld, with
respect to incidence, is that the main beam is much larger for negative x than for positive.
This is to be expected: the source-observer Mach number is larger in the upstream
M

x
direction than downstream and, as explained by Hanson [23], this increase in Mach

number increases the radiation e$ciency of the source. Figure 5(b) shows the acoustic
pressure contours in the rotor plane. The rotor disc radius and the sonic radius are also
indicated to allow the application of the geometric interpretation of Chapman [15],
discussed in section (2.1). Note that in this "gure, the sonic radius is the innermost of the two
dashed curves. As the sonic radius varies with azimuth, the rotor blades penetrate the far
"eld by a varying amount. Since the acoustic energy from the subsonic part of the rotor has
to tunnel across the transition region, the zone around the sonic radius, varying amounts of
energy are lost across the transition, making the acoustic "eld asymmetric. Prentice [33]
has shown that for a subsonic ring source, exponentially small amounts of energy leak
across the transition region. If the transition region varies in thickness, even by the quite
small amount of Figure 5(b), it seems reasonable that this should give rise to large variations
in the acoustic energy crossing the boundary at any given azimuth, an e!ect made obvious
in Figure 5(b). The acoustic pressure has a strong azimuthal dependence, especially in the
region between the sonic and disc radii and in the far "eld. Naturally, the physical process at
work is that described by Hanson [23], but the interpretation in terms of radiation
tunnelling across the transition region is also useful.
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4.2. CONVENTIONAL PROPELLER AT TAKEOFF

The next two operating conditions are identical except for their angle of attack. In Figure
6, "eld data are shown for a propeller of tip Mach number M

t
"0)8 and a #ight Mach

number M
=
"0)2 at angle of attack a"203, representative of a conventional propeller

taking o! or landing. The rotor is subsonic at all points of a revolution and the acoustic "eld
is similar to that calculated for a subsonic rotor in earlier work [15, 16]. Figure 6(a) shows
the acoustic pressure in the plane y"0. There is little variation in the acoustic wavelength,
due to the relatively low #ight speed, and the pressure contours are bent in the direction of
M

z
. The far "eld does not display the strong beaming pattern seen in Figure 5, the side lobes

being quite weak. The slice at z"0 shows why. The sonic radius r*'1 at all points and the
acoustic energy must tunnel across quite a wide transition region. There are variations in
the thickness of this transition region, however, giving rise to asymmetry in the "eld. In
Figure 6(a), the lobe for negative x is obviously larger than that for positive x, due to the
greater source Mach number in this direction. Similarly, in Figure 6(b) radiation is clearly
stronger towards the bottom left-hand corner of the plot, again due to the variation in
Mach number as the source rotates.

4.3. HELICOPTER ROTOR IN FORWARD FLIGHT

The last set of realistic operating parameters is identical to that of section 4.2 but with the
angle of attack increased to 853. This makes the results representative of the acoustic "eld of
a helicopter rotor in forward #ight, as well as providing a useful comparison with the data
shown in Figure 6. The combination of M

=
, M

t
and a is such that the maximum tip velocity

is just below sonic and the transition region thickness is almost zero at h"n/2. This gives
rise to a very large variation in the acoustic "eld. Figure 7(a) shows the "eld at y"0 and the
asymmetry is quite obvious. At negative x there is a large lobe with a narrower
high-pressure lobe lying inside it, almost symmetric about the source plane. On the other
side of the rotor axis, the "eld is very weak with only a small lobe which dies away quite
quickly with radius. In Figure 7(b), the reason for this strong variation is made clear. The
sonic radius varies from 1)0008 to 1)50, causing large variations in the thickness of the
transition region through which the acoustic energy must tunnel. In the source plane, there
is a very weak acoustic "eld for about 1803 of azimuth, with sound being radiated strongly
towards the bottom left-hand corner of the plot. Again, this is a physical consequence of the
variations in source-observer Mach number, but can also be quite naturally explained in the
framework of the "eld geometry.

4.4. HIGH SPEED ROTOR AT 903 INCIDENCE

The last set of operating parameters have been chosen purely to examine the physics of
the system and not for their relation to a real application. The angle of attack was set to 903
and the tip and #ight Mach numbers were chosen to force the sonic radius to have values
greater than and less than one. In this way, the blade tips oscillate in and out of the
transition region. The operating conditions chosen were M

x
"0)2 and M

t
"1. This leads,

"rst of all, to an acoustic "eld which is symmetric about z"0, as seen in Figure 8(a). The
"eld is, not unexpectedly, much stronger upstream than downstream, i.e., for negative x.
There is also a noticeable di!erence in the acoustic wavelength either side of the rotor axis.
The source velocity downstream is greater than that upstream and this causes a marked
change in the Doppler factor. Figure 8(b) showing the plane z"0 demonstrates the same
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e!ect. The variation in the thickness of the transition region, bounded by r"1 and r* is
quite large and this leads to a large variation in the strength of the acoustic "eld, especially
on the rotor disc itself. In the lower half of the disc, there are pockets of high pressure, which
disappear in the upper half. As in Figure 7, the strongest radiation is in the negative x,
negative y direction, where the source-observer Mach numbers are greatest.

5. CONCLUSIONS

A computationally e$cient method for the exact calculation of the acoustic "eld of
rotating sources at incidence has been developed. Results from the procedure for
parameters characteristic of aircraft propellers and rotors show the structure of the acoustic
"eld at incidence and how it is modi"ed by the angle of attack. As shown in previous work
on supersonic propellers [11, 13], the sonic radius is an essential parameter in determining
the radiated acoustic "eld. Previous work [15] has shown that the "eld structure is
determined by acoustic radiation tunnelling from the near "eld into the far "eld, via
a transition zone around the sonic radius. In this paper, the importance of this transition
has been emphasized: at incidence, the sonic radius becomes a function of angle on the rotor
disc and the transition zone varies in thickness. Because the radiation decays exponentially
as it crosses the transition region [33], even small variations in the sonic radius can cause
large asymmetry in the far "eld, as seen in Figures 5}8. The observations of previous studies
[20, 22, 23] have been con"rmed and can now be viewed in an alternative framework which
links the problem of the propeller at incidence to the asymptotic studies of supersonic rotors
[11, 13] which noted the importance of the sonic radius in determining the structure of the
radiated "eld.
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